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Percolation and epidemics in a two-dimensional small world
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Percolation on two-dimensional small-world networks has been proposed as a model for the spread of plant
diseases. In this paper we give an analytic solution of this model using a combination of generating function
methods and high-order series expansion. Our solution gives accurate predictions for quantities such as the
position of the percolation threshold and the typical size of disease outbreaks as a function of the density of
‘‘shortcuts’’ in the small-world network. Our results agree with scaling hypotheses and numerical simulations
for the same model.
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I. INTRODUCTION

The small-world model has been introduced by Watts a
Strogatz@1# as a simple model of a social network—a ne
work of friendships or acquaintances between individua
for instance, or a network of physical contacts betwe
people through which a disease spreads. The model con
of a regular lattice, typically a one-dimensional lattice w
periodic boundary conditions although lattices of two
more dimensions have been studied as well, with a sm
number of ‘‘shortcut’’ bonds added between randomly ch
sen pairs of sites, with densityf per bond on the origina
regular lattice. The small-world model captures two spec
features observed in real-world networks, namely~i! loga-
rithmically short distances through the network betwe
most pairs of individuals and~ii ! high network clustering,
meaning that two individuals are much more likely to
friends with one another if they have one or more oth
friends in common. The model turns out to be amenable
treatment using a variety of techniques drawn from statist
physics and has as a result received wide attention in
physics community@2–7#.

The small-world model has some problems, however
particular, it is built on a low-dimensional regular lattice, a
there is little justification to be found in empirical studies
social networks for such an underlying structure. As recen
pointed out by Warrenet al. @8#, however, there is one cas
in which the small-world model may be a fairly accura
representation of a real-world situation, and that is in
spread of plant diseases. Plant diseases spread through p
cal contacts between plants—immediate contagion, in
vectors, wind, and so forth—and these contacts form a ‘‘
cial network’’ among the plants in question. However, pla
are sessile, and confined by and large to the two-dimensi
plane of the Earth’s surface. Disease spread as a resu
short-range contact between plants is thus probably well
resented as a transmission process on a simple
1063-651X/2002/65~2!/021904~7!/$20.00 65 0219
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dimensional lattice, and disease spread in which some
tion of transmission is due to longer-range vectors such
wind or insects may be well represented by a small-wo
model built upon an underlying two-dimensional lattice. B
cause of this, as well as because of inherent mathema
interest, a number of recent papers have focused on t
dimensional small-world networks@8,10,11#. ~It is possible
also that the model could be used to represent forest w
fires, whose spread may be influenced by long-range cont
as well as local ones. There is some evidence that mo
with local contacts only do not mimic real fires well@9#.!

In this paper we study bond percolation on tw
dimensional~2D! small-world networks. Bond percolation i
equivalent to the standard susceptible/infectious/recove
~SIR! model of disease spread@8,12#, in which all individu-
als are initially susceptible to the disease, become infec
~and hence infectious! with some probability per unit time if
one of their neighbors is infectious, and recover again,
coming uninfectious and also immune, after a certain time
the infectious state. The equivalence of the SIR mode
percolation is straightforward, with the percolation thresho
mapping to the epidemic threshold of the disease in the
model, and cluster sizes mapping to the sizes of disease
breaks which start with a single disease carrier. Using a c
bination of an exact generating function method with a hig
order series expansion, we derive approximate anal
results for the position of the threshold and the mean o
break and epidemic sizes as a function of the density
shortcuts in the 2D small-world network and the percolat
probability, which is equivalent to disease transmission pr
ability. As we demonstrate, our results are in excellent agr
ment with those from other studies using different metho
as well as with our own numerical simulations.

II. GENERATING FUNCTION FORMALISM

We study the two-dimensional small-world model built o
the square lattice. The model is depicted in Fig. 1. We
©2002 The American Physical Society04-1
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velop our generating function formalism for the general c
of a d-dimensional square/cubic/hypercubic underlying l
tice first, narrowing our scope to the two-dimensional case
Sec. III where we describe our series expansion calculati
For a d-dimensional lattice with bonds along the princip
axes out to distancek @3#, the underlying lattice hasdLdk
bonds on it, whereL is the system dimension, and shortcu
are added with probabilityf per underlying bond, for a tota
of dLdkf shortcuts. Then all bonds, including the shortc
bonds, are occupied with probabilityp, or not with probabil-
ity 12p, and we construct the percolation clusters of si
connected by the occupied bonds.

The generating function part of our calculation follow
the method of Moore and Newman@13#. We define a prob-
ability generating functionH(z) thus:

H~z!5 (
n51

`

P~n!zn, ~1!

whereP(n) is the probability that a randomly chosen site
our small-world network belongs to a connected cluster on
sites other than the system-spanning cluster. Note that if
probability distributionP(n) is properly normalized, then
H(1)51 below the transition andH(1)512S above the
transition whereS is the fraction of the system occupied b
the system-spanning cluster.

We also defineP0(n) to be the probability that a ran
domly chosen site belongs to a cluster ofn sites on the un-
derlying lattice. The complete cluster on the small-world n
work is composed of a set of such underlying clusters, join
together by occupied shortcut bonds. If we denote
P(mun) the probability that an underlying cluster ofn sites
has exactlym shortcuts emanating from it, then the gener
ing functionH(z) can be written self-consistently as@13#

H~z!5 (
n51

`

P0~n!zn(
m

P~mun!@H~z!#m. ~2!

~The derivation of this equation assumes that all clus
other than the percolating cluster, if there is one, contain
closed loops other than those on the underlying lattice,

FIG. 1. ~a! A two-dimensional small-world network built upon
square lattice with connection rangek51. ~b! Whenk.1 the un-
derlying lattice contains bonds beyond nearest-neighbor bo
along each principal axis out to rangek, as shown here fork53.
This bond arrangement differs from that used in some other n
neighbor interaction models, but is conventional for the small-wo
model.
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there are no loops involving shortcut bonds. This is on
strictly true in the limit of infinite system size, and hence o
results will only be exact in this limit.!

There are a total of 2dLdkfp ends of occupied shortcut
in the model, and since all ends are uniformly distribut
over the lattice the probability that any end lands in a giv
cluster of sizen is just n/Ld for large L. Thus P(mun) is
given by the binomial distribution

P~mun!5S 2dLdkfp
m D F n

LdGmF12
n

LdG2dLdkfp2m

. ~3!

Substituting into Eq.~2! and performing the sum overm, this
gives

H~z!5(
n

P0~n!znF11~H~z!21!
n

LdG2dLdkfp

5(
n

P0~n!@ze2dkfp(H(z)21)#n, ~4!

where the last equality holds in the limit of largeL. If we
define the additional generating function

H0~z!5(
n

P0~n!zn, ~5!

which is the probability generating function for the sizes
clusters for ordinary bond percolation on the underlying l
tice, then Eq.~4! can be written in the form

H~z!5H0~ze2dkfp„H(z)21…!. ~6!

This gives a self-consistency condition from which we c
evaluateH(z), and hence we can evaluate the probabilit
P(n) for cluster sizes in the small-world model.

In fact, it is rarely possible to solve Eq.~6! for H(z) in
closed form~although evaluation by numerical iteration
often feasible!, but we can derive closed-form expressio
for other quantities of interest. In particular, the average s
of the cluster to which a randomly chosen site belongs
given by

^n&5(
n

nP~n!5H8~1!5H08~1!@112dkfpH8~1!#,

~7!

or, rearranging,

^n&5
H08~1!

122dkfpH08~1!
. ~8!

This quantity diverges when

2dkfpH08~1!51, ~9!

or equivalently when

ds

t-
d
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f5
1

2dkpH08~1!
, ~10!

and this point marks the phase transition at which a g
cluster scaling as a power of the system size first for
Another way of looking at this result is to note thatH08(1)
5^n0&, the average cluster size on the underlying latti
Thus percolation takes place when

2dkfp5
1

^n0&
. ~11!

The quantity on the left-hand side of this equation is
average density of the ends of occupied shortcut bonds
the lattice ~see Sec. IV!, and thus percolation takes plac
when there is on average exactly one end of an occu
shortcut bond per cluster on the underlying lattice. This
reminiscent of the phase transition in an Erdo˝s-Rényi ran-
dom graph, which occurs at the point where each verte
the graph is attached to exactly one edge on average@14#.

Above the phase transitionS512H(1) is the size of the
giant cluster. Settingz51 in Eq. ~6! we find that S is a
solution of

S512H0~e22dkfpS!, ~12!

which can be solved by numerical iteration starting from
suitable initial value ofS. An expression similar to Eq.~8!
for the average size of nonpercolating clusters above
transition can also be derived. See, for example, Ref.@15#.

III. SERIES EXPANSIONS

In the one-dimensional case studied in Ref.@13#, the cal-
culation of the generating functionH0(z) is trivial—it is
equivalent to solving the problem of bond percolation in o
dimension. In the present case, however, we are intere
primarily in the two-dimensional small-world model, an
calculatingH0 is much harder; no exact solution has ev
been given for the distribution of cluster sizes for bond p
colation on the square lattice. Instead therefore we turn
series expansion to calculateH0 approximately.

H0(z) for the two-dimensional case can be written as

H0~z!5(
stn

nznps~12p! tgstn , ~13!

wheregstn is the number of different possible clusters on
square lattice which haves occupied bonds,t unoccupied
bonds around their perimeter, andn sites. If we can calculate
gstn up to some finite order then we can calculate an appr
mation toH0(z) also. Unfortunately, becausegstn depends
separately on three different indices, it is prohibitive
memory intensive to calculate on a computer up to high
der. We note, however, that we only needH0 as a function of
p andz, and not of 12p separately, so we can collect term
in p and rewrite the generating function as
02190
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H0~z!5 (
m50

`

pmQm~z!, ~14!

where the quantitiesQm(z) are finite polynomials inz which
are, it is not hard to show, of orderzm11. Calculating these
polynomials is considerably more economical than calcu
ing the entire set ofgstn . We have calculated them up t
orderm531 using the finite-lattice method@16#, in which a
generating function for the infinite lattice is built up by com
bining generating functions for the same problem on fin
lattices. The finite lattices used in this case were rectan
of h3 l sites and the quantity we consider is the fundamen
generating function for the cluster density

G~z,p!5(
stn

znps~12p! tgstn , ~15!

which, it can be shown, is given by the linear combinatio

G~z,p!5(
hl

whlGhl~z,p!, ~16!

wherewhl are constant weights that are independent of b
z and p, and Ghl(z,p) is the generating function for con
nected clusters~bond animals! which span anh3 l rectangle
both from left to right and from top to bottom.

Due to the symmetry of the square lattice, the weig
factor whl is simply

whl5H 0 for l ,h

1 for l 5h

2 for l .h.

~17!

The individual generating functionsGhl(z,p) for the finite
lattices are calculated using a transfer matrix method, w
generating functions for all rectangles of a given heighh
being evaluated in a single calculation. The algorithm we
is based on that of Conway@17# with enhancements simila
to those used by Jensen@18# for the enumeration of site
animals on the square lattice@19#. Since clusters spanning
rectangle ofh3 l sites contain at leasth1 l 22 bonds, we
must calculateGhl(z,p) for all h<(m11)/2 andh< l<m
2h12 in order to derive a series expansion forG(z,p)
correct to orderm in p. For the orderm531 calculation
described here the maximal value ofh required was 16.

Once G(z,p) is calculated, the polynomialsQm(z) are
easily extracted by collecting terms inp. @Alternatively, one
could writeH0(z)5z]G/]z, although doing so offers no op
erational advantage in the present case.# In Table I we list the
values ofQm(z) for m up to 10; the complete set of polyno
mials up tom531 is available from the authors on reque
We notice that sinceH0(1)51 for all p,pc , as it must
given that the probability distribution it generates is prope
normalized, it must be the case that

Qm~1!5H 1 for m50

0 for m>1.
~18!
4-3
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TABLE I. The values of the polynomialsQm(z) up to m510.

m Qm(z)

0 z
1 4z224z
2 18z3224z216z
3 88z42144z3160z224z
4 435z52860z41504z3280z21z
5 2184z625020z513784z421008z3160z2

6 11018z7228932z6126550z529872z411260z3224z2

7 55888z82164668z71177972z6285100z5116912z421008z314z2

8 284229z92928840z811153698z72673836z61184125z5219880z41504z3

9 1448800z1025197176z917291488z825030312z711754424z62283320z5116240z42144z3

10 7396290z11228890160z10145155952z9235926720z8115278872z723323088z61317940z529104z4118z3
e

to
a

at

lts

t it

o-
It can easily be verified that this is true for the orders giv
in Table I. This implies thatH0 will be correctly normalized
even if we truncate its series at finite order inp, as we do
here. This makes our calculations a little easier.

In order to calculate the average cluster size~8! and po-
sition of the phase transition~10! in our small-world model,
we need to evaluate the quantityH08(1), which is given by

H08~1!5 (
m50

`

pmQm8 ~1!. ~19!

The quantitiesQm8 (1) are just numbers—their values up
m531 are given in Table II—so that this expression is
simple power series inp. If we make use of our results form
up to 31 to evaluate this quantity directly, we can calcul
02190
n

e

the behavior of the 2D small-world model using the resu
of Sec. II. However, we can do better than this.

SinceH08(1) is the average sizên0& of a cluster in ordi-
nary bond percolation on the square lattice, we know tha
must diverge atpc5 1

2 , and that it does so as (pc2p)2g,
where g is the mean cluster-size exponent for tw
dimensional percolation which is equal to43

18 . With this in-
formation we can construct a Pade´ approximant toH08(1)
@21,22#. Writing

H08~1!5A~p!Fpc2p

pc
G2g

, ~20!

where A(p) is assumed analytic nearpc , we construct a
Padéapproximant to the series for
es

e is at
TABLE II. The derivativesQm8 (1) for all orders up tom531, which are also the coefficients of the seri
for the mean cluster size—see Eq.~19!. Note that although the values forQm8 (1) appear initially to be
positive and increasing roughly exponentially, this rule does not hold in general. The first negative valu
m522, and the signs ofQm8 (1) appear to alternate form.22.

m Qm8 (1) m Qm8 (1)

0 1 1 4
2 12 3 36
4 88 5 236
6 528 7 1392
8 2828 9 7608

10 14312 11 39348
12 69704 13 197620
14 318232 15 1013424
16 1278912 17 5362680
18 4418884 19 28221636
20 11543548 21 152533600
22 220880672 23 903135760
24 2705437704 25 5680639336
26 27577181144 27 37205966052
28 266485042424 29 253460708032
30 2534464876516 31 1767651092388
4-4
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A~p!5Fpc2p

pc
Gg

H08~1!, ~21!

using our series forH08(1). Then we use this approximant i
Eq. ~20! to give an expression forH08(1) which agrees with
our series expansion result to all available orders, and h
divergence of the expected kind atp5 1

2 . As is typically the
case with Pade´ approximants, the best approximations a
achieved with the highest order symmetric or ne
symmetric approximants and using all available orders in
series expansion, we find the best results using a@15,15#
approximant toA(p) in Eq. ~21!. In Fig. 2 we show the
resulting estimate for̂n0&5H08(1) ~dotted line! as a func-
tion of p against numerical results for the average cluster s
on an ordinary square lattice~squares!. As the figure shows
the agreement is excellent.

Substituting our Pade´ approximant expression forH08(1)
into Eq.~8! we can now calculate average cluster size for
small-world model for any value off, and from Eq.~10! we
can calculate the position of the phase transition. In Fig. 2
show the results for̂n& as a function ofp along with nu-
merical results for the same quantity from simulations of
model. In Fig. 3 we show the results forpc plotted against
numerical calculations@23#. In both cases, the agreement b
tween analytic and numerical results is excellent. In the in
of Fig. 3 we show the results forpc on logarithmic scales
along with the value calculated by using the series expan
for H08(1) directly in Eq. ~10! ~dotted line!. As the figure
shows, the Pade´ approximate continues to be accurate
very low values off, where the direct series expansion fai

IV. SCALING FORMS

As Ozana@11# has pointed out, there are two competi
length scales present in percolation models on small-w

FIG. 2. The average of size in sites of the cluster to whic
randomly chosen site belongs for bond percolation on a t
dimensional small-world network withk51. The circles are simu-
lation results for systems of 102431024 sites, calculated using th
fast algorithm of Newman and Ziff@20#, and the solid lines are the
analytic result, Eq.~8!. From left to right, the values off for each
of the lines are 1.0, 0.5, 0.2, 0.1, 0.05, and 0.02. Asf diminishes
the lines asymptote to the normal square lattice form which is in
cated by the square symbols~simulation results! and the dotted line
~series expansion/Pade´ approximant result!.
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networks. One is the characteristic lengthj of the small-
world model itself which is given byj51/(2fkd)1/d, where
d is the dimension of the underlying lattice~2 in the present
case!. This length is the typical linear dimension of the vo
ume on the underlying lattice which contains the end of o
shortcut on average. In other wordsj2d52fkd is the den-
sity of the ends of shortcuts on the lattice.~In fact, one nor-
mally leaves the factor of 2 out of the definition of the cha
acteristic length, but we include it since it makes t
resulting formulas somewhat neater in our case.! In the cur-
rent percolation model, only a fractionp of the shortcuts are
occupied and thereby contribute to the behavior of
model—the unoccupied shortcuts can be ignored. Thus
appropriate characteristic length in our case is derived fr
the density of ends of occupied shortcuts, which was d
cussed in Sec. II. The correct expression is

j5
1

~2pfkd!1/d
. ~22!

The other length scale is the correlation length or typi
cluster dimension for the percolation clusters on the und
lying lattice. Normally the latter is also denotedj, but to
avoid confusion we follow the notation of Ref.@11# and here
denote itz. Ozana has given a finite-size scaling theory
percolation on small-world networks which addresses the
teraction of each of these length scales with the lattice
mensionL. Our analytic calculations, however, treat the ca
of L→`, for which a simpler scaling theory applies. In th

a
-

i-

FIG. 3. The position of the percolation transition for the 2
small-world network as a function of the densityf of shortcuts.
The points are simulation results, again using the algorithm of R
@20#, and the lines are our analytic calculation using a Pade´ approx-
imant. For the simulations, the value ofpc was taken to be the poin
at which the size of the largest cluster in the system has max
gradient as a function ofp. The slight difference between the nu
merical and analytic results appears to be a systematic error in
estimation ofpc from the numerical results~see Ref.@3# for a dis-
cussion of this point!. Inset: the same comparison on logarithm
scales. In this case, the vertical axis measures1

2 2pc , which should
go to zero withf according to1

2 2pc;f1/g whereg5
43
18. @This

can be deduced from Eq.~10!, and is also shown in Ref.@8#.# Again
the solid line is the Pade´ approximant calculation, while the dotte
line represents the value ofpc calculated directly from the serie
expansion without using a Pade´ approximant.
4-5
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case, the only dimensionless combination of lengths is
ratio z/j, and any observable quantityQ must satisfy a scal-
ing relation of the form

Q;zdaj2db f ~z/j!, ~23!

wherea andb are scaling exponents andf (x) is a universal
scaling function. This form applies when we are in the reg
where bothj and z are much greater than the lattice co
stant, i.e., when shortcut density is low~the scaling region of
the small-world model! and when we are close to the perc
lation transition on the normal square lattice.

We can rewrite Eq.~23! in a simpler form by making use
of Eq. ~22! and the fact that the typical cluster dimensionz
on the underlying lattice is related to typical cluster volum
by zd5^n0& ~assuming compact clusters!. This then implies
that

Q;^n0&
a~pfkd!bF~2pfkd^n0&!, ~24!

whereF(x) is another universal scaling function.
Consider, for example, the average cluster size^n& for the

small-world model. Since we know this becomes equal to
normal square-lattice valuên0& whenf50, we can imme-
diately assumea51, b50 and

^n&

^n0&
5F~2pfkd^n0&!. ~25!

Thus a plot of ^n&/^n0& against the scaling variablex
[2pfkd^n0& should yield a data collapse whose form fo
lows the scaling functionF(x). In fact there is no need to
make a scaling plot in this simple case. Comparison of
~25! with Eq. ~8!, bearing in mind that̂n0&5H08(1), reveals
that ^n& does indeed follow the expected scaling form wi

F~x!5
1

12x
. ~26!

The point x51, which is also the point at which the tw
length scales are equalj5z, thus represents the percolatio
transition in this case.@This observation is equivalent to Eq
~11!.#

A slightly less trivial example of the scaling form~24! is
the scaling of the sizeS of the giant percolation cluster, Eq
ro

02190
e

n

s

.

~12!. To deduce the leading terms in the scaling relation
S, we expand Eq.~12! close to the percolation transition i
powers ofS, to give

S5xS2
@H08~1!1H09~1!#

2@H08~1!#2
x2S21O~S3!. ~27!

Rearranging and keeping terms to leading order, we find

S.
2@H08~1!#2

@H08~1!1H09~1!#
Fx21

x2 G52
^n0&

2

^n0
2&

Fx21

x2 G . ~28!

If there is only one correlation length for percolation on t
underlying lattice then̂n0&

2/^n0
2& is homogeneous in it and

hence constant in the critical region. ThusS scales asS
;(x21)/x2 close to the transition, with the leading consta
being zero below the transition andO(1) above it.

V. CONCLUSIONS

We have presented analytic results for bond percolatio
the two-dimensional small-world network model, which h
been proposed as a simple model of the spread of plant
eases. Using a combination of generating function meth
and series expansion, we have derived approximate
highly accurate expressions for quantities such as the p
tion of the percolation transition in the model, the typic
size of nonpercolating clusters, and the typical size of
percolating cluster. Our results are in excellent agreem
with numerical simulations of the model. By judicious use
Padéapproximants for the series expansions, the results
even be extended to very low shortcut densities, wher
simple series expansion fails. The results are also in g
agreement with the expected scaling forms for the mode
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@2# M. Barthélémy and L.A.N. Amaral, Phys. Rev. Lett.82, 3180
~1999!.

@3# M.E.J. Newman and D.J. Watts, Phys. Rev. E60, 7332~1999!.
@4# A. Barrat and M. Weigt, Eur. Phys. J. B13, 547 ~2000!.
@5# M.A. de Menezes, C.F. Moukarzel, and T.J.P. Penna, Eu

phys. Lett.50, 574 ~2000!.
@6# S.N. Dorogovtsev and J.F.F. Mendes, Europhys. Lett.50, 1

~2000!.
@7# R.V. Kulkarni, E. Almaas, and D. Stroud, Phys. Rev. E61,

4268 ~2000!.
-

@8# C.P. Warren, L.M. Sander, and I.M. Sokolo
cond-mat/0106450.

@9# J.A.M.S. Duarte, inAnnual Reviews of Computational Physic,
edited by D. Stauffer~World Scientific, Singapore, 1997!,
Vol. 5.

@10# C.P. Warren, L.M. Sander, I.M. Sokolov, C. Simon, and
Koopman~unpublished!.

@11# M. Ozana, Europhys. Lett.55, 762 ~2001!.
@12# P. Grassberger, Math. Biosci.63, 157 ~1983!.
@13# C. Moore and M.E.J. Newman, Phys. Rev. E62, 7059~2000!.
@14# B. Bollobás, Random Graphs~Academic Press, New York

1985!.
4-6



v.

an
se
he
te
a
ch
s
ru
r

s,

cut
ch

PERCOLATION AND EPIDEMICS IN A TWO- . . . PHYSICAL REVIEW E 65 021904
@15# M.E.J. Newman, S.H. Strogatz, and D.J. Watts, Phys. Re
64, 026118~2001!.

@16# I.G. Enting, Nucl. Phys. B, Proc. Suppl.47, 180 ~1996!.
@17# A.R. Conway, J. Phys. A28, 335 ~1995!.
@18# I. Jensen, J. Stat. Phys.102, 865 ~2001!.
@19# Two practical differences between the algorithm we use

the algorithms used in previous calculations are that we u
transfer matrix with an intersection which cuts through t
edges of the lattice rather than the vertices and we calcula
two parameter (z andp) generating function rather than just
one parameter~p! generating function. Most other aspects su
as the encoding and transformations of the configuration
occupied and empty edges along the intersection and the
for updating the associated generating functions are simila
02190
E

d
a

a

of
les
to

earlier work.
@20# M.E.J. Newman and R.M. Ziff, Phys. Rev. Lett.85, 4104

~2000!; Phys. Rev. E64, 016706~2001!.
@21# J.W. Essam and M.E. Fisher, J. Chem. Phys.38, 802 ~1963!.
@22# D.S. Gaunt and A.J. Guttmann, inPhase Transitions and Criti-

cal Phenomena, edited by C. Domb and M.S. Green~Aca-
demic Press, London, 1974!, Vol. 3.

@23# In fact, the solid curves for̂n& in Fig. 2 change little if one
uses the series expansion, Eq.~19!, directly in Eq.~8!, rather
than using the Pade´ approximant. As the inset of Fig. 3 show
the difference between the series and the Pade´ approximant
only becomes important for very small values of the short
densityf&0.002, and the curves in Fig. 2 do not reach su
small values~except for the dottedf50 curve!.
4-7


