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Percolation and epidemics in a two-dimensional small world

M. E. J. Newman
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501

|. Jensen
Department of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3010, Australia

R. M. ziff
Michigan Center for Theoretical Physics and Department of Chemical Engineering, University of Michigan,
Ann Arbor, Michigan 48109-2136
(Received 12 September 2001; published 16 January)2002

Percolation on two-dimensional small-world networks has been proposed as a model for the spread of plant
diseases. In this paper we give an analytic solution of this model using a combination of generating function
methods and high-order series expansion. Our solution gives accurate predictions for quantities such as the
position of the percolation threshold and the typical size of disease outbreaks as a function of the density of
“shortcuts” in the small-world network. Our results agree with scaling hypotheses and numerical simulations
for the same model.
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[. INTRODUCTION dimensional lattice, and disease spread in which some por-
tion of transmission is due to longer-range vectors such as
The small-world model has been introduced by Watts andvind or insects may be well represented by a small-world

work of friendships or acquaintances between individualsc@use Of this, as well as because of inherent mathematical

for instance, or a network of physical contacts betweer{Mt€rest, @ number of recent papers have focused on two-
people through which a disease spreads. The model Consisq%nensmnal small-world networks3, 10,11. (It is possible .

of a regular lattice, typically a one-dimensional lattice with aiso that the model could b_e used to represent forest wild-

periodic boundary conditions although lattices of two orI'€S, Whose spread may be influenced by long-range contacts

more dimensions have been studied as well. with a smaftS well as local ones. There is some evidence that models

number of “shortcut” bonds added between randomly cho—With IOC"’." contacts only do not mimic real fire_s wedl.)
In this paper we study bond percolation on two-

sen pairs of sites, with densityp per bond on the original . ) L
regular lattice. The small-world model captures two specificd'mens'onaKZD) small-world networks. Bond percolation is

; : ivalent to the standard susceptible/infectious/recovered
features observed in real-world networks, namgjyloga- equiva ; : . o
rithmically short distances through the network between(SIR) m(_)d_e_l of disease _spreiﬂ,lZ], n which all mdlvu_:lu-
most pairs of individuals andii) high network clustering, als are |n|t|§IIy su_scep.tlble to the dlsef’a_se, becor_ne_ mfepted
meaning that two individuals are much more likely to be(and hence infectiogsvith some probability per unit time if

friends with one another if they have one or more otherPne of their neighbors is infectious, and recover again, be-

friends in common. The model turns out to be amenable t&°MiNG uninfectious and also immune, after a certain time in

treatment using a variety of techniques drawn from statisticaﬁhe |nfe<_:t|0L_Js state. The equwz_ilence of the .SlR model to
physics and has as a result received wide attention in thBercolatlon is straightforward, with the percolation threshold
physics communitf2—7] mapping to the epidemic threshold of the disease in the SIR
The small-world mod.el has some problems, however. | odel, and cluster sizes mapping to the sizes of disease out-
particular, it is built on a low-dimensional regular lattice, and b_reatl_<s th'Ch start \;‘”th a swtl_gle fd|sef_15e carilr]eraUs_erl]g ah(.:orzn'
there is little justification to be found in empirical studies of n(wja lon ol an exact generating dun_c lon metho V\g a 'Ig t'-
social networks for such an underlying structure. As recentl)f)r Er Series expansion, we derive approximate analylic
pointed out by Warrert al. [8], however, there is one case results for the_ position of the threshol_d and the mean out-
in which the small-world model may be a fairly accurate break anq epidemic sizes as a function of the densny of
representation of a real-world situation, and that is in theShorteuts in the 2D small-world network and the percolation

spread of plant diseases. Plant diseases spread through ph i(—_)t_)ab'l'w’ which is equivalent to disease transmission prob-
ility. As we demonstrate, our results are in excellent agree-

cal contacts between plants—immediate contagion, inse _ - . .
vectors. wind. and so forth—and these contacts form a “soMent with those from other studies using different methods,
y ; as well as with our own numerical simulations.

cial network” among the plants in question. However, plants
are sessile, and copfmed by and. large to the two-dimensional Il GENERATING FUNCTION EORMALISM

plane of the Earth’s surface. Disease spread as a result of

short-range contact between plants is thus probably well rep- We study the two-dimensional small-world model built on
resented as a transmission process on a simple twahe square lattice. The model is depicted in Fig. 1. We de-
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there are no loops involving shortcut bonds. This is only
strictly true in the limit of infinite system size, and hence our
(b) results will only be exact in this limi.

There are a total of @L.%¢p ends of occupied shortcuts
in the model, and since all ends are uniformly distributed
over the lattice the probability that any end lands in a given
cluster of sizen is justn/L® for large L. Thus P(m|n) is
given by the binomial distribution

(a)

m 2dek¢pfm

n
Ld

FIG. 1. (a) A two-dimensional small-world network built upon a P(m|n)= — ﬂd
square lattice with connection range=1. (b) Whenk>1 the un- L
derlying lattice contains bonds beyond nearest-neighbor bonds
along each principal axis out to rangeas shown here fok=3. ~ Substituting into Eq(2) and performing the sum oven, this
This bond arrangement differs from that used in some other nextgIvVES
neighbor interaction models, but is conventional for the small-world

model.

2dL%¢p
m

()

1+(H(z)—1)

n 12d )
L

H(2)=2 Po(n)z"
velop our generating function formalism for the general case 3
of a d-dimensional square/cubic/hypercubic underlying lat-
tice first, narrowing our scope to the two-dimensional case in = Py(n)[ze?dkepH@ DN, 4
Sec. lll where we describe our series expansion calculations. "
For ad-dimensional lattice with bonds along the principal
axes out to distanck [3], the underlying lattice hadL%
bonds on it, wheré. is the system dimension, and shortcuts
are added with probabilityy per underlying bond, for a total
of dL%¢ shortcuts. Then all bonds, including the shortcut Ho(2)=2, Po(n)2", (5)
bonds, are occupied with probabilipy or not with probabil- n

ity 1—p, and we construct the percolation clusters of sites = | - ) ] ]
connected by the occupied bonds. which is the probability generating function for the sizes of

The generating function part of our calculation follows clusters for ordinary bond percolation on the underlying lat-
the method of Moore and Newmd3]. We define a prob- tice, then Eq(4) can be written in the form
ability generating functiomd(z) thus:

where the last equality holds in the limit of large If we
define the additional generating function

H(Z):Ho(ZGde¢p(H(Z)71)). (6)

H(z)= >, P(n)z", (1)  This gives a self-consistency condition from which we can
n=1 evaluateH(z), and hence we can evaluate the probabilities
P(n) for cluster sizes in the small-world model.

whereP(n) is the probability that a randomly chosen site in =~ fact, it is rarely possible to solve E¢6) for H(z) in

our small-world network belongs to a connected clusten of g0 form(although evaluation by numerical iteration is

sites ot'h.er th.an'the' system—gpanning cluster. N.ote that if th8ften feasible but we can derive closed-form expressions
probability distributionP(n) is properly normalized, then ¢, siher quantities of interest. In particular, the average size

H(1)=1 below the transition andi(1)=1—S above the 4 the cluster to which a randomly chosen site belongs is
transition whereS is the fraction of the system occupied by given by

the system-spanning cluster.

We also definePy(n) to be the probability that a ran-
domly chosen site belongs to a clusterro$ites on the un- <n>=2 nP(n)=H’(1)=H{(1)[1+2dképH'(1)],
derlying lattice. The complete cluster on the small-world net- n
work is composed of a set of such underlying clusters, joined (@)
together by occupied shortcut bonds. If we denote by .
P(m|n) the probability that an underlying cluster ofsites or, rearranging,
has exactlym shortcuts emanating from it, then the generat- ,
ing functionH(z) can be written self-consistently &3] (n) Ho(1) ®)

i} T 1-2dkepHY(L)
H<z>=n§l Po<n>z”§ P(m|n)[H(2)]™ (2)

This quantity diverges when

(The derivation of this equation assumes that all clusters 2dk¢pHg(1)=1, 9)
other than the percolating cluster, if there is one, contain no

closed loops other than those on the underlying lattice, i.eQr equivalently when
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1

S Ho(2)= "Qm(2), 14
PYTTSTIERE (10) o(2) mZ:Op Qu(2) (14)

¢

and this point marks the phase transition at which a giantVhere the quantitieQ,(z) are finite pgllynomials iz which
cluster scaling as a power of the system size first formsare; it is not hard to show, of ordef""". Calculating these

Another way of looking at this result is to note the,(1) _polynomials_ is considerably more economical than calculat-
—(ny), the average cluster size on the underlying lattice!Nd the entire set ofjs;,. We have calculated them up to
Thus percolation takes place when orderm_= 31 using the f|n|te_-la_1tt_|ce m(_athqu], in which a
generating function for the infinite lattice is built up by com-
1 bining generating functions for the same problem on finite
2dk¢p=—. (11 lattices. The finite lattices used in this case were rectangles
{no) of hx1 sites and the quantity we consider is the fundamental

) ] ] o generating function for the cluster density
The quantity on the left-hand side of this equation is the

average density of the ends of occupied shortcut bonds on

the lattice (see Sec. Iy, and thus percolation takes place G(z,p)=2, 2"p%(1-p)'gstn, (15

when there is on average exactly one end of an occupied st

shortcut bond per cluster on the underlying lattice. This isWhiCh it can be shown. is given by the linear combination

reminiscent of the phase transition in an Ed®eyi ran- ' 159 y

dom graph, which occurs at the point where each vertex in

the graph is attached to exactly one edge on averbgle G(z,p)= >, WnGhi(z,p), (16)
Above the phase transitidd=1—H(1) is the size of the hl

giant cluster. Setting=1 in Eq. (6) we find thatS is a ) )
solution of wherewy, are constant weights that are independent of both

z and p, and Gy,/(z,p) is the generating function for con-
S=1— Ho(efzdkd)pS), (12) nected clusterébond animalswhich span arh X1 rectangle
both from left to right and from top to bottom.
Due to the symmetry of the square lattice, the weight

which can be solved by numerical iteration starting from a, L
factorwy, is simply

suitable initial value ofS. An expression similar to Eq8)
for the average size of nonpercolating clusters above the

transition can also be derived. See, for example, R 0 for I<h
w,={ 1 forl=h (17)
Ill. SERIES EXPANSIONS 2 for I>h.

In the one-dimensional case studied in R&8], the cal-  The individual generating functionG,(z,p) for the finite
culation of the generating functiohlo(z) is trivial—it IS |attices are calculated using a transfer matrix method, with
equivalent to solving the problem of bond percolation in onegenerating functions for all rectangles of a given height
dimension. In the present case, however, we are interestgghing evaluated in a single calculation. The algorithm we use
primarily in the two-dimensional small-world model, and i pased on that of Conwdil 7] with enhancements similar
calculatingHo is much harder; no exact solution has everyy those used by Jensd8] for the enumeration of site
been given for the distribution of cluster sizes for bond per-gnimals on the square latti§&9]. Since clusters spanning a
colation on the square lattice. Instead therefore we turn t@gectangle ofhx | sites contain at leasi+|—2 bonds, we
series expansion to calculath, approximately. must calculateGy,(z,p) for all h<(m+1)/2 andh<I<m

Ho(z) for the two-dimensional case can be written as  _ [+ 2 in order to derive a series expansion f8(z,p)
correct to orderm in p. For the orderm=31 calculation
described here the maximal valuelofequired was 16.

Once G(z,p) is calculated, the polynomial®(z) are
easily extracted by collecting terms jmn [Alternatively, one
whereg.,, is the number of different possible clusters on acould writeHq(z) =2JG/dz, although doing so offers no op-
square lattice which have occupied bondst unoccupied erational advantage in the present chkeTable | we list the
bonds around their perimeter, andites. If we can calculate Values ofQp(2) for mup to 10; the complete set of polyno-
Jsin UP to Some finite order then we can calculate an approxim'a|5 up tom=31_ is available from the authors on request.
mation toH,(z) also. Unfortunately, because,,, depends Ve notice that sincedo(1)=1 for all p<pc, as it must
separately on three different indices, it is prohibitively 91Ven that thg probability distribution it generates is properly
memory intensive to calculate on a computer up to high orormalized, it must be the case that
der. We note, however, that we only nedg as a function of
p andz, and not of - p separately, so we can collect terms Q.(1)=
in p and rewrite the generating function as m

Ho<z):§n nZ"pS(1-p)'Qsin, (13

1 for m=0

0 for m=1. (18)
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TABLE I. The values of the polynomial®,(z) up to m=10.

m Qm(z)

0 z

1 47°— 4z

2 187°— 247+ 62

3 88&*— 1447°+ 60z — 4z

4 435°—86Q0r* + 5042° — 807°+ z

5 21845—5020°+ 3784*— 100&° + 6072

6 1101&"—28932°+ 26550°— 9872* + 126(° — 247>

7 5588&°%—16466& '+ 1779725 85100°+ 1691%*— 1008+ 42°

8 28422%°—92884@°%+ 1153698 — 67383&°+ 18412%°— 1988%* + 5047°
9 144880@'°— 5197176+ 7291488°%— 50303127 + 1754424°— 28332@°+ 16240* — 1447°

10

7396290 - 2889016@°+ 45155952° — 3592672@%+ 152788727 — 332308&°+ 31794@°— 9104* + 182°

It can easily be verified that this is true for the orders giventhe behavior of the 2D small-world model using the results
in Table I. This implies thaH, will be correctly normalized of Sec. Il. However, we can do better than this.

even if we truncate its series at finite ordergnas we do SinceH}(1) is the average siz@,) of a cluster in ordi-
here. This makes our calculations a little easier. nary bond percolation on the square lattice, we know that it

In order to calculate the average cluster §i@eand po- must diverge ap.=3, and that it does so ap{—p) 7,
sition of the phase transitiofi0) in our small-world model, where y is the mean cluster-size exponent for two-

we need to evaluate the quantldf (1), which is given by dimensional percolation which is equal 3. With this in-
formation we can construct a Pad@proximant toHg(1)

o [21,22. Writing
Ho(1)= 2 p"Qn(1). (19
, Pc—pP| 7
N _ _ Ho<1>=A<p>{ : } , (20
The quantitiesQ, (1) are just numbers—their values up to Pe

m=31 are given in Table [l—so that this expression is a

simple power series ip. If we make use of our results fon ~ where A(p) is assumed analytic negqr,, we construct a
up to 31 to evaluate this quantity directly, we can calculatePadeapproximant to the series for

TABLE Il. The derivativesQ/,(1) for all orders up tan=231, which are also the coefficients of the series
for the mean cluster size—see Hd9). Note that although the values f@,,(1) appear initially to be
positive and increasing roughly exponentially, this rule does not hold in general. The first negative value is at
m=22, and the signs d,,(1) appear to alternate fon>22.

Qm(1)

m m Qm(1)

0 1 1 4

2 12 3 36

4 88 5 236

6 528 7 1392

8 2828 9 7608
10 14312 11 39348
12 69704 13 197620
14 318232 15 1013424
16 1278912 17 5362680
18 4418884 19 28221636
20 11543548 21 152533600
22 —20880672 23 903135760
24 — 705437704 25 5680639336
26 — 7577181144 27 37205966052
28 —66485042424 29 253460708032
30 — 534464876516 31 1767651092388
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20 networks. One is the characteristic lengthof the small-
world model itself which is given byg=1/(2¢kd)*, where
d is the dimension of the underlying latti¢2 in the present
case. This length is the typical linear dimension of the vol-
ume on the underlying lattice which contains the end of one
shortcut on average. In other worgs®=2¢kd is the den-
sity of the ends of shortcuts on the latti¢ fact, one nor-
mally leaves the factor of 2 out of the definition of the char-
acteristic length, but we include it since it makes the
resulting formulas somewhat neater in our cagethe cur-
rent percolation model, only a fractignof the shortcuts are
occupied and thereby contribute to the behavior of the
model—the unoccupied shortcuts can be ignored. Thus the
appropriate characteristic length in our case is derived from
FIG. 2. The average of size in sites of the cluster to which athe density of ends of occupied shortcuts, which was dis-
randomly chosen site belongs for bond percolation on a twocussed in Sec. Il. The correct expression is
dimensional small-world network witk=1. The circles are simu-

10|

average cluster size <>

occupation probability p

lation results for systems of 10241024 sites, calculated using the 1

fast algorithm of Newman and Ziff20], and the solid lines are the &= (2 d)kd)l’d' (22
analytic result, Eq(8). From left to right, the values ap for each P

of the lines are 1.0, 0.5, 0.2, 0.1, 0.05, and 0.02.¢Adiminishes The other length scale is the correlation length or typical

the lines asymptote to the normal square lattice form which is indi<| ,ster dimension for the percolation clusters on the under-
cated by the square symbdsmulation resultsand the dotted line lying lattice. Normally the latter is also denotéd but to

(series expansion/Padpproximant result avoid confusion we follow the notation of R¢fl1] and here

p.—pl” denote it{. Ozana has given a finite-size scaling theory for
A(p)= Ho(1), (21 percolation on small-world networks which addresses the in-
Pe teraction of each of these length scales with the lattice di-

using our series foH,(1). Then we use this approximant in mensionL. Our analytic calculations, however, treat the case
Eq. (20) to give an expression fddj(1) which agrees with of L—oo, for which a simpler scaling theory applies. In this
our series expansion result to all available orders, and has a
divergence of the expected kind at 3. As is typically the
case with Padapproximants, the best approximations are
achieved with the highest order symmetric or near-
symmetric approximants and using all available orders in our
series expansion, we find the best results usird®15
approximant toA(p) in Eq. (21). In Fig. 2 we show the

05 ¢———T———T1—

04 f

03 |

0.001  0.01 0.1

percolation threshold p,

resulting estimate fotny)=H},(1) (dotted ling as a func- 0.2 ‘
tion of p against numerical results for the average cluster size
on an ordinary square lattidequares As the figure shows, 01 7
the agreement is excellent. : | | | |
. - ¢ . H ! 0.0 P PR TR — TR T —
Substituting our Padapproximant expression fdtl (1) 00 0a 04 06 08 10

into Eq.(8) we can now calculate average cluster size for the
small-world model for any value ap, and from Eq(10) we
can calculate the position of the phase transition. In Fig. 2we FIG. 3. The position of the percolation transition for the 2D
show the results fofn) as a function ofp along with nu-  small-world network as a function of the density of shortcuts.
merical results for the same quantity from simulations of theThe points are simulation results, again using the algorithm of Ref.
model. In Fig. 3 we show the results fpg plotted against [20], and the lines are our analytic calculation using a Pagfgrox-
numerical calculationf23]. In both cases, the agreement be-imant. For the simulations, the value @f was taken to be the point
tween analytic and numerical results is excellent. In the inseat which the size of the largest cluster in the system has maximal
of Fig. 3 we show the results fqu, on logarithmic scales, gradient as a function gb. The slight difference between the nu-
along with the value calculated by using the series expansiofferical and analytic results appears to be a systematic error in the
for Hé(l) directly in Eq.(10) (dotted ling. As the figure estlmatlon Ofpc fro_m the numerical resultésee Ref[3] for a d.IS- .
shows, the Pa’dapproximate continues to be accurate tocussion of this point Inset: the same comparison on logarithmic

very low values ofp, where the direct series expansion fails, /€S- In this case, the vertical axis me?,sére“' which should
go to zero with¢ according to; —p.~ ¢~'* where y=13. [This

IV. SCALING FORMS can be deduced from qu.O), and is also shown in Rdf8]] Again
the solid line is the Padapproximant calculation, while the dotted
As Ozana[11] has pointed out, there are two competingline represents the value @ calculated directly from the series
length scales present in percolation models on small-worl@xpansion without using a Padgproximant.

density of shortcuts ¢
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case, the only dimensionless combination of lengths is th€l2). To deduce the leading terms in the scaling relation for

ratio £/, and any observable quanti§y must satisfy a scal-
ing relation of the form

O~ e (L1¢),

wherea and B are scaling exponents arfi¢ix) is a universal

(23

scaling function. This form applies when we are in the regio

where both¢é and { are much greater than the lattice con
stant, i.e., when shortcut density is Idthe scaling region of

the small-world modegland when we are close to the perco-

lation transition on the normal square lattice.
We can rewrite Eq(23) in a simpler form by making use
of EqQ. (22) and the fact that the typical cluster dimension

S we expand Eq(12) close to the percolation transition in
powers ofS to give

HI(1)+ HY(1
sxg LW HTH] oL o).

2[Hg(1)1? 20

nRearranging and keeping terms to leading order, we find

x—1
2

Xx—1
2

_2HP
[Ho(1)+Hp(1)]

<”o>2
Zng)

If there is only one correlation length for percolation on the

(28)

on the underlying lattice is related to typical cluster volumeunderlying lattice therno)?/(ng) is homogeneous in it and

by £9=(n,) (assuming compact clusterghis then implies
that

hence constant in the critical region. Th@sscales asS
~(x—1)/x? close to the transition, with the leading constant

being zero below the transition a@(1) above it.
Q~(ng)“(pepkd)’F(2pgkd(ny)),

whereF(x) is another universal scaling function.

Consider, for example, the average cluster éigefor the We have presented analytic results for bond percolation in
small-world model. Since we know this becomes equal to itgshe two-dimensional small-world network model, which has
normal square-lattice valug,) when¢=0, we can imme- been proposed as a simple model of the spread of plant dis-
diately assumex=1, =0 and eases. Using a combination of generating function methods

and series expansion, we have derived approximate but
ﬂzF(Z Hkd(no)) highly accurate expressions for quantities such as the posi-
No) P o7 tion of the percolation transition in the model, the typical
i ) i size of nonpercolating clusters, and the typical size of the
Thus a plot of (n)/(ny) against the scaling variable  percolating cluster. Our results are in excellent agreement
=2p¢kd(ny) should yield a data collapse whose form fol- with numerical simulations of the model. By judicious use of
lows the scaling functior(x). In fact there is no need to padeapproximants for the series expansions, the results can
make a scaling plot in this simple case. Comparison of Edeven be extended to very low shortcut densities, where a
(25) with Eq. (8), bearing in mind thagng) =Hy(1), reveals  simple series expansion fails. The results are also in good
that(n) does indeed follow the expected scaling form with agreement with the expected scaling forms for the model.

(24
V. CONCLUSIONS

(25
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